

Microwave dielectric properties of novel (1-x)MgTiO₃-xCa_{0.5}Sr_{0.5}TiO₃ ceramics

Chuying Chen¹ · Zhijian Peng¹ · Luzhi Xie¹ · Ke Bi² · Xiuli Fu²

Received: 16 April 2020 / Accepted: 1 July 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this work, the microstructure and microwave dielectric properties of novel $(1-x) \text{MgTiO}_3 - x \text{Ca}_{0.5} \text{Sr}_{0.5} \text{TiO}_3$ (x=0.035-0.045) ceramics were investigated. The samples were prepared via the solid-state sintering method using the pre-synthesized ultrafine MgTiO₃ and $(\text{Ca}_{0.5}\text{Sr}_{0.5})\text{TiO}_3$ powders by molten-salt reaction. As the x value increases from 0.035 to 0.045, the quality factor $(Q \cdot f)$ of the samples presents an increase first and then a decrease, reaching the maximum of 70,000 with x=0.0375. The dielectric constant (ε_r) increases monotonously with the increase of x, which is 20.96 when x=0.0045. The temperature coefficient of resonant frequency (τ_f) progressively increases with increasing content of $\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$. When x=0.004, the obtained $0.96\text{MgTiO}_3-0.04\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ ceramics sintered at 1275 °C for 4 h display excellent microwave dielectric properties with an ε_r value of about 20.57, a relatively high $Q \cdot f$ value of roughly 58,000 GHz, and a near-zero τ_f value of approximately -1.16 ppm/°C. Such ceramics might be a good candidate for high-performance microwave dielectric devices.

1 Introduction

In global wireless communication system, various microwave dielectric components have been rapidly developed in the last decades, in which microwave dielectric materials play a key role with massive employments [1–5]. In order to meet the demands for high-performance microwave devices, there are three major features that excellent dielectric materials should possess: an appropriate dielectric constant (ε_r), high quality factor ($Q \cdot f$) and near-zero temperature coefficient of resonant frequency (τ_f) [6, 7]. A higher ε_r value would facilitate the miniaturization of devices, high $Q \cdot f$ enables a low loss, and near-zero τ_f provides a high stability at varied application temperatures [8].

Among all the low-loss materials with a medium dielectric constant, ilmenite-structured magnesium titanate

⊠ Zhijian Peng pengzhijian@cugb.edu.cn

Published online: 09 July 2020

- School of Science, China University of Geosciences, Beijing 100083, People's Republic of China
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China

(MgTiO₃) is one of the well-known candidates in industry [9, 10]. Because of their low dielectric loss, MgTiO₃ ceramics have been widely applied in dielectric components such as phase shifters, tunable filters, antennas, and stabilizers of frequency oscillation for the communications at microwave frequency [11, 12]. Generally, MgTiO₃ ceramics possess good dielectric performances with an $\varepsilon_{\rm r}$ value of about 17 and Q·f of roughly 160,000 GHz (at 7 GHz) [13]. However, the τ_f value of pure MgTiO₃ ceramics is roughly - 50 ppm/°C, which is not appropriate for such devices. To obtain dielectric materials with a near-zero τ_f value, the normally adopted approaches are to combine two or more materials of opposite τ_f values to form a solid solution or mixed phases [14–16]. Therefore, the compositing of MgTiO₃ with other compounds of a positive τ_f value is considered as the most feasible way to produce the desired high-performance MgTiO₃-based microwave dielectric materials with a near-zero τ_f value. In the literature, the perovskite-structured CaTiO₃ $(\varepsilon_r = 170, Q \cdot f = 3600 \text{ GHz and } \tau_f = 800 \text{ ppm/}^{\circ}\text{C})$ and SrTiO₃ ($\varepsilon_r = 290$, $Q \cdot f = 4800$ GHz and $\tau_f = 1700$ ppm/°C) are generally introduced into microwave dielectric ceramics on account of their high positive τ_f values [17–20]. For the preparation of MgTiO₃-based microwave dielectric ceramics, Huang et al. [21] indicated that with a ratio of Mg:Ca = 95:5, the obtained 0.95MgTiO₃-0.05CaTiO₃

ceramics possessed a near-zero τ_f value with $\varepsilon_r = 20-21$ and $Q \cdot f = \sim 56,000$ GHz (at 7 GHz). Also in 2004, it was reported that 0.964MgTiO₃-0.036SrTiO₃ ceramics exhibited an excellent dielectric performance with $\varepsilon_r = 20.76$, $Q \cdot f = 71,000 \text{ GHz}$, and $\tau_f = -1.27 \text{ ppm/}^{\circ}\text{C}$ [22]. Owing to the similar perovskite structure between SrTiO₃ and CaTiO₃, it was indicated that Ca_rSr_{1-r}TiO₃ solid solution such as $Ca_{0.8}Sr_{0.2}TiO_3$ and $Ca_{0.5}Sr_{0.5}TiO_3$ would also show a good dielectric feature [23]. So later in the work of Pan et al. [24], $Ca_{0.8}Sr_{0.2}TiO_3$ ($\varepsilon_r = 180$, $Q \cdot f = 8300$ GHz and $\tau_f = 990 \text{ ppm/}^{\circ}\text{C}$) was added into MgTiO₃ to prepare a series of (1-x)MgTiO₃-xCa_{0.8}Sr_{0.2}TiO₃ ceramics, optimizing that 0.94MgTiO₃-0.06Ca_{0.8}Sr_{0.2}TiO₃ ceramics possessed an excellent combination of microwave dielectric properties: $\varepsilon_r = \sim 21.9$, $Q:f = \sim 128,000$ GHz, and $\tau_f = \sim 0.7$ ppm/°C. And Zhang et al. [25] revealed that after the doping of Ca_{0.8}Sr_{0.2}TiO₃, the obtained 0.78MgTiO₃-0.22Ca_{0.8}Sr_{0.2}TiO₃ ceramics could provide a combination of dielectric properties of $\varepsilon_r = 20.25$, Q:f=74,200 GHz, and $\tau_f=-1.28$ ppm/°C. Moreover, it is known that $Ca_0 {}_5Sr_0 {}_5TiO_3$ ($\varepsilon_r = 240$ and $Q \cdot f = 4100$ GHz) possesses a higher ε_r value than $Ca_{0.8}Sr_{0.2}TiO_3$ [23], and its temperature coefficient of dielectric constant (τ_s) decreases with the increase of the ε_r value [26]. Since $\tau_f \approx -(1/2)\tau_s$, the τ_f value of a dielectric material would increase as ε_r increases [26–28]. In other words, $Ca_{0.5}Sr_{0.5}TiO_3$ should also have a higher τ_f value than Ca_{0.8}Sr_{0.2}TiO₃. Therefore, Ca_{0.5}Sr_{0.5}TiO₃ would be a better choice to combine with MgTiO₃ to produce the desired high-performance microwave dielectric materials with a near-zero τ_f value. Through doping less amount of secondary Ca_{0.5}Sr_{0.5}TiO₃ phase, such combination is expected to obtain a MgTiO₃-based dielectric ceramic composite with a near-zero τ_f , high ε_r and even high $Q \cdot f$ value. However, to the best of our knowledge, no work about the preparation of Ca_{0.5}Sr_{0.5}TiO₃-doped MgTiO₃ microwave dielectric ceramics has been reported.

In this work, different amounts of Ca_{0.5}Sr_{0.5}TiO₃ were designed to add into MgTiO3 matrix to prepare a series of composite ceramics, which had a nominal composition of (1-x)MgTiO₃-xCa_{0.5}Sr_{0.5}TiO₃ ((1-x)MT-xCST, where x = 0.035 - 0.045 with a step of 0.025). The samples were prepared via the solid-state sintering method using the presynthesized ultrafine MgTiO₃ and (Ca_{0.5}Sr_{0.5})TiO₃ powders by molten-salt reaction. The molten-salt synthesis was adopted because it could prepare the ultrafine powders to promote the sintering of the final composite ceramics [29]. The microstructure and microwave dielectric properties of the obtained ceramics were systematically investigated. As expected, temperature-stable microwave dielectric ceramics with high $Q \cdot f$ and moderate ε_r values were obtained through adjusting the value of x. Such ceramics might be a good candidate for high-performance microwave dielectric devices.

2.1 Samples preparation

MgTiO₃ and Ca_{0.5}Sr_{0.5}TiO₃ ultrafine powders were first separately prepared by a modified molten-salt synthesis method [29] from high-purity raw powders of MgCl₂·6H₂O (>99.0%), SrCl₂·6H₂O (>99.0%), CaCl₂ (>99.0%), NaOH (>96.0%), KOH (>99.0%), and TiO₂ (>99.0%). All the chemicals were bought from Sinopharm Group Co. Ltd., which were used as received. During typical process, the raw powders in stoichiometry were accurately weighed and mixed in distilled water for 24 h by rotational ball milling with highly wear-resistant ZrO₂ balls as the grinding media. Then the slurries were dried at 120 °C for 10 h in air, and the resultant powder chunks were calcined in a Muffle furnace for 3 h at 900 °C for MgTiO₃ and 1200 °C for Ca_{0.5}Sr_{0.5}TiO₃, respectively. After calcination, the resultant powder chunks were ground and re-milled by rotational ball milling for 12 h. During the milling, the emulsions were cleaned by centrifuging with distilled water for several times and then the collected powders were dried again at 120 °C for 12 h.

Afterwards, the acquired powders were weighed and mixed in the designed composition (1-x)MT-xCST, where x=0.035, 0.0375, 0.04, 0.0425, and 0.045, respectively. During the mixing, the powders were milled in distilled water for 24 h with high-resistance ZrO_2 balls as the grinding media and 10 wt% PVA as the binder. After milling, the slurries were dried again at 120 °C, and the resultant powder chunks were ground and sieved into fine powders. Then the obtained powders were pressed into pellets with a diameter of 12 mm and thickness of 6 mm under a pressure of 6 MPa. Finally, the pellets were sintered at the optimal temperature of 1275 °C for 4 h at a heating rate of 2 °C/min.

2.2 Samples characterization

The crystalline phases of the sintered samples were identified by X-ray diffraction (XRD, D/max-RB, Japan; Cu $K\alpha$, $\lambda=1.5418$ Å) in a continuous mode at a scan speed of 4°/min. The microstructures were observed by using a scanning electron microscope (SEM, SU8020, Hitachi, Japan). An energy dispersive X-ray (EDX) spectroscope attached to the SEM was applied to investigate the elemental compositions of the samples. The apparent densities were measured based on the Archimedean principle (international standard ISO18754). The relative densities were defined as the percentage of the measured apparent density to the calculated theoretical density on the basis of mixture

rule. The microwave dielectric properties of the samples were measured on a vector network analyzer (Keysight E5063A, America) in the frequency range of 6–9 GHz. The dielectric constant was obtained by the Hakki–Coleman method, which was modified by the Courtney method [30]. The unload Q values were evaluated by the cavity method in the TE_{011} mode, and the τ_f values were calculated by the following equation [31]:

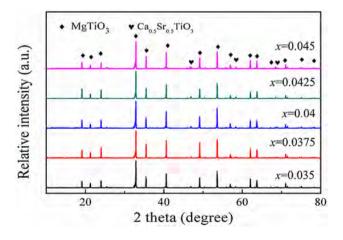
$$\tau_{\rm f} = \frac{f_2 - f_1}{f_1 (T_2 - T_1)} \tag{1}$$

where f_1 and f_2 represent the $TE_{01\sigma}$ resonant frequency of the samples at 25 and 85 °C, respectively.

3 Results and discussion

3.1 Phase composition and microstructure

In this work, all the (1-x)MT-xCST (x=0.035-0.045) specimens were sintered at the optimal temperature of 1275 °C (the lowest temperature to obtain dense 0.955MT-0.045CST sample) for 4 h to exclude the impact of sintering. Figure 1 shows the XRD patterns of the (1-x)MT-xCST ceramics fabricated with x from 0.035 to 0.045. The results reveal that all the samples are a composite of a main ilmenite MgTiO₃ phase and a minor perovskite Ca_{0.5}Sr_{0.5}TiO₃ phase as designed. The formation of such composites could be attributed to the different phase structures between MgTiO₃ and Ca_{0.5}Sr_{0.5}TiO₃ together with the big ionic radius discrepancy between Mg²⁺ (0.72 Å), Ca²⁺ (1.00 Å), and Sr²⁺ (1.44 Å) ions in the ceramics. Therefore, all the obtained (1-x)MT-xCST ceramics are basically a simple solid solution of MgTiO₃ and Ca_{0.5}Sr_{0.5}TiO₃.



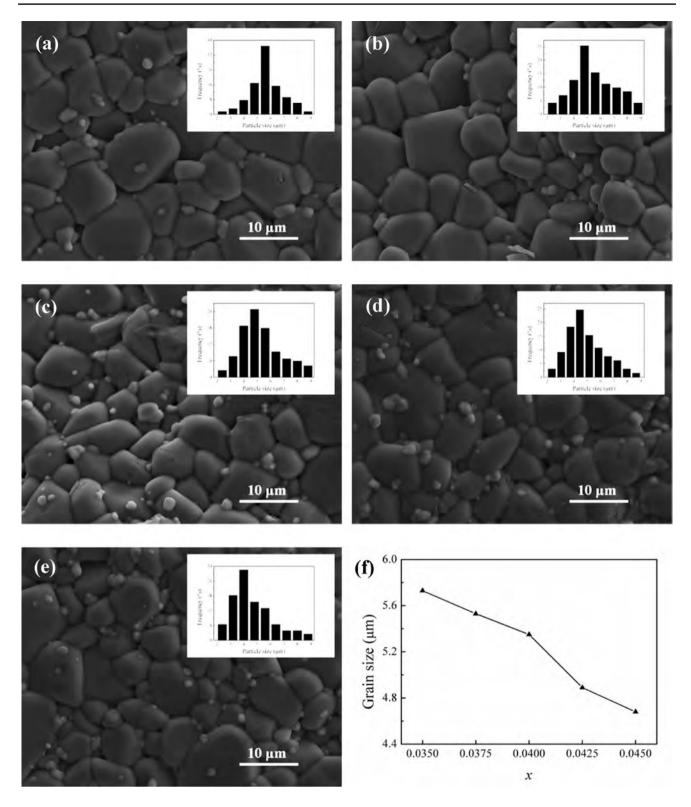

Fig. 1 XRD patterns of the obtained (1-x)MT-xCST ceramics

Figure 2 presents the typical second-electron SEM micrographs of the obtained (1-x)MT-xCST ceramics (x = 0.035 - 0.045). As is seen, the grains of the main MgTiO₃ phase in all the samples present a normal distribution (see Fig. 2a-e), and its average size decreases with increasing value of x, which is 5.73, 5.53, 5.35, 4.89, and 4.68 μ m when x equals to 0.035, 0.0375, 0.04, 0.0425, and 0.045, respectively (see Fig. 2f). Owing to the presence of Ca_{0.5}Sr_{0.5}TiO₃ solid solution phase (the small particles on the big grains) in the samples, the movement of the MgTiO₃ grain boundary would be impeded and the re-union of MgTiO₃ phase became difficult. Therefore, by increasing the addition amount of Ca_{0.5}Sr_{0.5}TiO₃, the grain boundary of MgTiO₃ phase was pinned by the Ca_{0.5}Sr_{0.5}TiO₃ particles, which would finally result in smaller MgTiO₃ grains. Moreover, all the samples are quite dense. Comparatively, after the addition of Ca_{0.5}Sr_{0.5}TiO₃, the samples first became a little denser due to the moderate decrease in grain size of matrix MgTiO₃ phase, the promotion effect on sintering via solid solution and the filling effect of the small Ca_{0.5}Sr_{0.5}TiO₃ grains into the pores constructed by the main, big MgTiO₃ grains, but with more Ca_{0.5}Sr_{0.5}TiO₃, the sample would present a less dense structure with more pores because of the increasing pinning effect of Ca_{0.5}Sr_{0.5}TiO₃ on the movement of main MgTiO₃ phase, which will hinder the sintering of the samples.

In order to clarify the distribution of the $Ca_{0.5}Sr_{0.5}TiO_3$ solid solution phase, back-scattering electron imaging was carried out. Typical micrograph on the polished surface of the sample 0.955MT–0.045CST is presented in Fig. 3. It is seen that there are two domains on the micrograph: bright white (α) and dark gray (β), indicating two kinds of grains. According to the different sizes of the two domains, it can be deduced that the bigger ones are the matrix MgTiO₃ grains, while the smaller ones are the added $Ca_{0.5}Sr_{0.5}TiO_3$ particles.

EDX technique was also used to distinguish each kind of grain in the specimen. Table 1 presents the elemental contents of two kinds of grains as exhibited in Fig. 3. It was revealed that from the obtained (1-x)MT-xCST ceramics, O, Ti, Mg, Ca, and Sr atoms could be detected. However, on the bright white domain (α grain), there are O, Ti, Ca, and Sr atoms almost without Mg, indicating that it should be a Ca_{0.5}Sr_{0.5}TiO₃ particle. Meanwhile, on the dark gray domain (β grain), only O, Ti, and Mg atoms were detected, revealing that such domain is attributed to the MgTiO₃ grain. All these results indicate that the obtained (1-x)MT-xCST ceramics are a solid solution of MgTiO₃ and Ca_{0.5}Sr_{0.5}TiO₃. On combination with the XRD results, it can be confirmed that such type of solid solution would not change the phase composition of the resultant composites. In addition, it can also be seen from Fig. 3 that most of the Ca_{0.5}Sr_{0.5}TiO₃ grains segregate into the triangular grain boundaries of MgTiO₃

Fig. 2 Typical second-electron SEM micrographs on the polished surface of the obtained (1-x)MT-xCST specimens: **a** x=0.035, **b** x=0.0375, **c** x=0.04, **d** x=0.0425, and **e** x=0.045. Each inset exhib-

its the grain size distribution of the main $MgTiO_3$ phase in the specimens. **f** Relationship between x and grain size of $MgTiO_3$

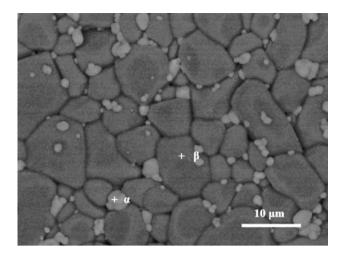
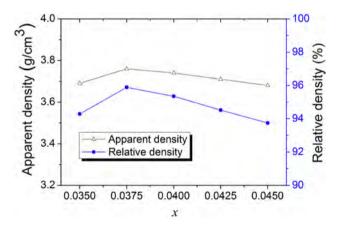



Fig. 3 Back-scattering electron image on the polished surface of the typical sample $0.955MT{-}0.045CST$

Table 1 Elemental contents measured by EDX analysis of grains α and β as shown in Fig. 3

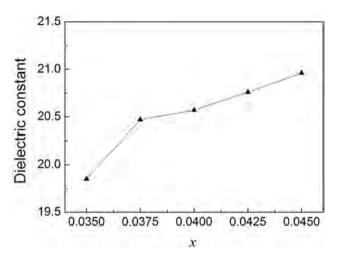

Elements	O (at.%)	Ti (at.%)	Mg (at.%)	Ca (at.%)	Sr (at.%)
Grain α	64.33	18.71	_	7.30	9.66
Grain β	62.06	18.6	19.27	_	_

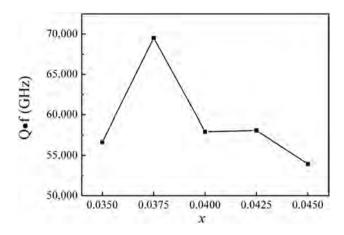
Fig. 4 Apparent density and relative density of the (1-x)MT-xCST (x=0.035-0.045) specimens

grains and less amount of Ca_{0.5}Sr_{0.5}TiO₃ grains are on the surface of MgTiO₃ grains.

Figure 4 illustrates the relationship between x, apparent density, and relative density. As can be seen, after the addition of increasing amount of $Ca_{0.5}Sr_{0.5}TiO_3$, the apparent density and relative density of the obtained (1-x)MT-xCST ceramics increase initially and decrease thereafter, presenting a maximum of 3.76 g/cm³ and 95.89%, respectively, when x = 0.0375, which is consistent with the observation

Fig. 5 The $\varepsilon_{\rm r}$ value of the obtained $(1-x){\rm MT-}x{\rm CST}$ ceramics (x=0.035-0.045)

by SEM imaging. The increase in the densification of the obtained samples with little amount of $Ca_{0.5}Sr_{0.5}TiO_3$ should be ascribed to the following factors: (i) the moderate decrease in grain size of matrix MgTiO₃ phase, which is beneficial for extruding gases in the samples; (ii) the promotion effect on sintering via solid solution, which possibly acts as liquid to aid the sintering; and (iii) the filling effect of the small $Ca_{0.5}Sr_{0.5}TiO_3$ grains into the pores constructed by the main, big MgTiO₃ grains (see Fig. 3). But with excessive $Ca_{0.5}Sr_{0.5}TiO_3$, the movement of MgTiO₃ grains would be seriously impeded due to the pinning effect of $Ca_{0.5}Sr_{0.5}TiO_3$ grains, and the sintering ability of the samples would, thus, decrease, finally resulting in a decreased densification of the samples.


3.2 Microwave dielectric properties

The ε_r value of the obtained (1-x)MT-xCST ceramics (x=0.035-0.045) is displayed in Fig. 5. It is seen that with increasing x, the ε_r value of the present samples monotonously increases, reaching 20.96 when x=0.045 (the maximum in the designed range of x). As is well known, ε_r represents the polarization capacity of microwave dielectric ceramics. Generally speaking, the ε_r value of a microwave dielectric composite is significantly dependent upon the secondary phase in the sample and its relative density (sample densification) [32]. For a microwave dielectric ceramic composite with two phases, its ε_r value can be estimated by using the following equation proposed by Kim [33, 34],

$$\ln \varepsilon_{\rm r} = V_1 \ln \varepsilon_{\rm r1} + V_2 \ln \varepsilon_{\rm r2} \tag{2}$$

where ε_r represents the dielectric constant of the ceramic composite, V_1 and V_2 are, respectively, the volume fraction

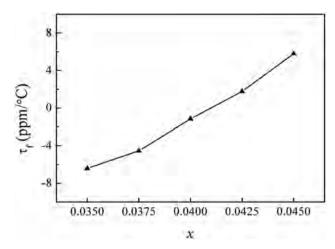


Fig. 6 The $Q \cdot f$ value of the obtained (1-x)MT-xCST ceramics (x=0.035-0.045)

of the constituent phases, and ε_{r1} and ε_{r2} represent the dielectric constant of the constituent phases, respectively. In this work, the additive $\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ has much higher ε_r (ε_r = 240) than the matrix MgTiO $_3$ (ε_r = 17). According to Eq. (2), with the increase of x, the ε_r value of the obtained (1-x)MT-xCST ceramics would increase. Moreover, when x<0.4, as shown in Fig. 4, the increased densification of the samples would also contribute to the increase of ε_r value. It should be noted that although the relative density of the samples decreases with excessive amount of $\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$, the resultant negative effect on the ε_r value is less than the positive effect produced by the addition of $\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$. Therefore, the ε_r value keeps increasing with the addition of $\text{Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ for the present samples.

Figure 6 presents the $Q \cdot f$ value of the obtained (1-x)MT-xCST ceramics (x = 0.035-0.045). As is seen, with increasing x, the $Q \cdot f$ value of the samples rises up first and drops down later, presenting a maximum of 70,000 when x = 0.0375. The Q-f value is an important standard for the application of microwave components under the working frequencies since a high $Q \cdot f$ value implies a low dielectric loss. Generally speaking, the porosity and grain size are the two main factors which affect the dielectric loss of microwave dielectric ceramics [35, 36]. For the present (1-x)MT–xCST ceramics, with increasing value of x, their relative density increases initially ($x \le 0.0375$), indicating a decrease of porosity. Correspondingly, the $Q \cdot f$ value of the samples increases. When x > 0.0375, the porosity of the samples increases, thus resulting in the decrease of the Q cdot f values. In addition, as displayed in Fig. 2f, the grain size of the obtained (1-x)MT-xCST ceramics exhibits a decreasing tendency with increasing value of x. The decreased grain size would lead to an increased number of grain boundaries, which would give rise to the increase of dielectric loss. Resultantly, the $Q \cdot f$ value of the samples would decrease. Due to the two opposite factors, a maximum $Q \cdot f$ value of

Fig. 7 The τ_f value of the obtained (1-x)MT-xCST ceramics (x=0.035-0.045)

70,000 GHz was reached for the 0.9625 MgTiO_3 – $0.0375 \text{ Ca}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ ceramics.

Figure 7 displays the $\tau_{\rm f}$ value of the obtained (1-x) MT–xCST (x=0.035–0.045) ceramics. In this work, the $\tau_{\rm f}$ values were measured at 6–9 GHz in the temperature range from 25 to 85 °C. It is seen that the $\tau_{\rm f}$ value of the samples varies from – 6.41 to +5.80 ppm/°C with increasing value of x. Since the $\tau_{\rm f}$ curve would go through zero point, it indicates that a ceramic composite with $\tau_{\rm f}$ =0 could be obtained by appropriately adjusting the x value. Generally speaking, the $\tau_{\rm f}$ value of microwave dielectric materials is related to the composition or phases existing in the samples. The $\tau_{\rm f}$ value of the present composite ceramics can be estimated by the following mixing rule [37],

$$\tau_{\rm f} = V_1 \tau_{\rm f1} + V_2 \tau_{\rm f2} \tag{3}$$

in which V_1 and V_2 are, respectively, the volume fraction of the constituent phases, and $\tau_{\rm f1}$ and $\tau_{\rm f2}$ are the temperature coefficients of resonant frequency of the constituent phases, respectively. For the present $(1-x){\rm MT}$ – $x{\rm CST}$ system, a sample with a near-zero $\tau_{\rm f}$ value of $-1.16~{\rm ppm}/^{\circ}{\rm C}$ would be obtained when x=0.04, which needs a relatively low content of secondary phase in the sample to reach the goal compared with the similar ceramic composites reported in the literature (see Table 2).

4 Conclusions

Novel (1-x)MgTiO₃-xCa_{0.5}Sr_{0.5}TiO₃ (x=0.035–0.045) composite ceramics were prepared via the solid-state sintering method using the pre-synthesized ultrafine MgTiO₃ and $(Ca_{0.5}Sr_{0.5})$ TiO₃ powders by molten-salt reaction. The microstructures and microwave dielectric properties of the

Table 2 Comparison on modulating the τ_f values of MgTiO₃ systems

Compositions	Sintering parameters	$Q \cdot f(GHz)$	τ _f (ppm/°C)	Refs
0.95MgTiO ₃ –0.05CaTiO ₃	1400 °C, 3 h	56,000	0	[21]
$0.964 Mg TiO_3 - 0.036 Sr TiO_3$	1270 °C, 2 h	71,000	-1.27	[22]
$0.94MgTiO_3-0.06Ca_{0.8}Sr_{0.2}TiO_3$	1300 °C, 4 h	128,000	0.7	[24]
$0.78 Mg TiO_3 - 0.22 Ca_{0.8} Sr_{0.2} TiO_3$	1300 °C, 4 h	74,200	-1.28	[25]
$0.96 Mg TiO_3 - 0.04 Ca_{0.5} Sr_{0.5} TiO_3$	1275 °C, 4 h	58,000	-1.16	This work

obtained samples were investigated. All the obtained composite ceramics consist of a main ilmenite MgTiO₃ phase and a minor perovskite Ca_{0.5}Sr_{0.5}TiO₃ phase. The addition of Ca_{0.5}Sr_{0.5}TiO₃ would lead to a decreased grain size of the MgTiO₃ phase in the samples. The densification of the samples increased first and decreased later as the x value increased from 0.035 to 0.045. When x=0.04, the 0.96MgTi O₃-0.04(Ca_{0.5}Sr_{0.5})TiO₃ ceramics sintered at 1275 °C for 4 h have excellent microwave dielectric properties of ε_r =20.57, Q:f=58,000 GHz, and τ_f = - 1.16 ppm/°C.

Acknowledgements The authors would like to thank the financial support for this work from the National Natural Science Foundation of China (Grant Nos. 11674035 and 61274015) and the Fundamental Research Funds for the Central Universities.

References

- J. Guo, A.L. Baker, H.Z. Guo, M. Lanagan, C.A. Randall, Cold sintering process: a new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 100, 669–677 (2017)
- M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)
- C.H. Hsu, C.J. Huang, Preparation, structural and microwave dielectric properties of CaLa₄(Zr_xTi_{1-x})₄O₁₅ ceramics. J. Alloys Compd. 587, 45–49 (2014)
- C.L. Huang, J.Y. Chen, C.C. Liang, Dielectric properties and mixture behavior of Mg₄Nb₂O₉-SrTiO₃ ceramic system at microwave frequency. J. Alloys Compd. 478, 554–558 (2009)
- S. Sahoo, Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO₃ nanoparticles. J. Adv. Ceram. 7, 99–108 (2018)
- A. Templeton, X.R. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83, 95–100 (2000)
- F. Qin, S. Zhang, R.Z. Zuo, Ultralow-loss and thermally stable Li₄MgSn_{2-1.25x}Nb_xO₇ microwave dielectric ceramics. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03121-3
- M.J. Wu, Y.C. Zhang, M.Q. Xiang, Synthesis, characterization and dielectric properties of a novel temperature stable (1-x) CoTiNb₂O_{8-x}ZnNb₂O₆ ceramic. J. Adv. Ceram. 8, 228–237 (2019)
- H.J. Jo, E.S. Kim, Dependence of microwave dielectric properties on the complex substitution for Ti-site of MgTiO₃ ceramics. Ceram. Int. 43, S326–S333 (2017)
- L. Nikzad, H. Majidian, S. Ghofrani, T. Ebadzadeh, Sintering behavior and microwave dielectric properties of MgTiO₃ obtained from coprecipitation method with additives. Int. J. Appl. Ceram. Technol. 15, 569–574 (2018)
- U. Ullah, W.F.F.W. Ali, M.F. Ain, N.M. Mahyuddin, Z.A. Ahmad, Design of a novel dielectric resonator antenna using

- $MgTiO_3$ -CoTiO₃ for wideband applications. Mater. Des. **85**, 396–403 (2015)
- Y.C. Chen, S.M. Tsao, C.S. Lin, S.C. Wang, Y.H. Chien, Microwave dielectric properties of 0.95MgTiO₃-0.05CaTiO₃ for application in dielectric resonator antenna. J. Alloys Compd. 471, 347–351 (2009)
- 13. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics **91**, 69–86 (1989)
- D.Y. Gui, C.H. Wang, W.J. Zhu, C.M. Meng, Phase controlled Raman modes and dielectric properties in (1-x)MgTiO_{3-x}(Mg₄ Ta₂O₉)_{1/3}. J. Alloys Compd. 730, 434–440 (2018)
- L.X. Li, S. Li, T. Tian, X.S. Lyu, J. Ye, H. Sun, Microwave dielectric properties of (1-x)MgTiO₃-x(Ca_{0.6}Na_{0.2}Sm_{0.2})TiO₃ ceramic system. J. Mater. Sci. 27, 1286–1292 (2016)
- Y.C. Liou, Y.C. Wu, Microwave dielectric properties of ZnNb₂O₆-SrTiO₃ stacked resonators. J. Electron. Mater. 46, 2387–2392 (2017)
- M.H. Weng, C.T. Liauh, S.M. Lin, H.H. Wang, R.Y. Yang, Sintering behaviors, microstructure, and microwave dielectric properties of CaTiO₃-LaAlO₃ ceramics using CuO/B₂O₃ additions. Materials 12, 4187 (2019)
- Z.F. Fu, J.L. Ma, P. Liu, Y. Liu, Novel temperature stable Li₂Mg₃TiO₆-SrTiO₃ composite ceramics with high Q for LTCC applications. Mater. Chem. Phys. 200, 264–269 (2017)
- H.S. Ren, T.Y. Xie, Z.L. Wu, F. He, Y. Zhang, S.H. Jiang, X.G. Yao, H.X. Lin, Crystal structure, phase evolution and dielectric properties in the Li₂ZnTi₃O₈-SrTiO₃ system as temperature stable high-Q material. J. Alloys Compd. 797, 18–25 (2019)
- H.S. Ren, Z.L. Wu, F. He, Y. Zhang, X.Y. Zhao, X.G. Yao, H.X. Lin, Investigation on phase and microstructures of a temperature stable high-Q Li₂Zn_{0.95}Sr_{0.05}Ti₃O₈ microwave dielectric ceramic. J. Mater. Sci. 30, 8154–8159 (2019)
- C.L. Huang, M.H. Weng, Improved high Q value of MgTiO₃-CaTiO₃ microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741–2750 (2001)
- W.W. Cho, K. Kakimoto, H. Ohsato, High-Q microwave dielectric SrTiO₃-doped MgTiO₃ materials with near-zero temperature coefficient of resonant frequency. Jpn. J. Appl. Phys. 43, 6221–6224 (2004)
- P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Prize, D.M. Iddles, D.S. Cannell, Structure-microwave property relations in (Sr_xCa_{1-x})_{n+1}Ti_nO_{3n+1}. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)
- C.L. Pan, C.H. Shen, P.C. Chen, T.C. Tan, Characterization and dielectric behavior of a new dielectric ceramics MgTiO₃-Ca_{0.8}Sr_{0.2}TiO₃ at microwave frequencies. J. Alloys Compd. 503, 365–369 (2010)
- J. Zhang, Y. Luo, Z.X. Yue, L.T. Li, Temperature stability, low loss and defect relaxation of MgO-TiO₂ microwave dielectric ceramics modified by Ca_{0.8}Sr_{0.2}TiO₃. Ceram. Int. 44, 141–145 (2018)
- M.P. Seabra, V.M. Ferreira, H. Zheng, I.M. Reaney, Structure property relations in La(Mg_{1/2}Ti_{1/2})O₃-based solid solutions. J. Appl. Phys. 97, 033525 (2005)

- J. Varghese, T. Siponkoski, M. Nelo, M.T. Sebastian, H. Jantunen, Microwave dielectric properties of low-temperature sinterable α-MoO₃. J. Eur. Ceram. Soc. 38, 1541–1547 (2018)
- B. Ullah, W. Lei, Q.S. Cao, Z.Y. Zou, X.K. Lan, X.H. Wang, W.Z. Lu, Structure and microwave dielectric behavior of A-site-doped Sr_{1-1.5x}Ce_xTiO₃ ceramics system. J. Am. Ceram. Soc. 99, 3286–3292 (2016)
- P. Yang, Z.Q. Liu, H.B. Qi, Z.J. Peng, X.L. Fu, High-performance inductive couplers based on novel Ce³⁺ and Co²⁺ ions co-doped Ni-Zn ferrites. Ceram. Int. 45, 13685–13691 (2019)
- Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microw. Theory Technol. 33, 586–592 (1985)
- I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)
- B. Jancar, D. Suvorov, M. Valant, G. Drazic, Characterization of CaTiO₃-NdAlO₃ dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391–1400 (2003)
- D.W. Kim, B.W. Park, J.H. Chung, Mixture behaviour microwave dielectric properties in the low fired TiO₂-CuO system. Jpn. J. Appl. Phys. 39, 2696–2700 (2000)

- S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)
- C.F. Yang, C.C. Chan, C.M. Cheng, Y.C. Chen, 'The sintering and microwave dielectric characteristics of MgTa_{1.5}Nb_{0.5}O₆ ceramics. J. Eur. Ceram. Soc. 25, 2849–2852 (2005)
- A. Kan, H. Ogawa, H. Ohsato, Influence of microstructure on microwave dielectric properties of ZnTa₂O₆ ceramics with low dielectric loss. J. Alloys Compd. 337, 303–308 (2002)
- C.L. Huang, S.S. Liu, Characterization of extremely low loss dielectrics (Mg_{0.95}Zn_{0.05})TiO₃ at microwave frequency. Jpn. J. Appl. Phys. 46, 283–285 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

